Rainbow structures in locally bounded colorings of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex rainbow colorings of graphs

In a properly vertex-colored graphG, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P . If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring ofG. The minimum numbe...

متن کامل

Locally Restricted Colorings of Graphs

Let G be a simple graph and f a function from the vertices of G to the set of positive integers. An (f, n)-coloring of G is an assignment of n colors to the vertices of G such that each vertex x is adjacent to less than f(x) vertices with the same color as x. The minimum n such that an (f, n)-coloring of G exists is defined to be the f chromatic number of G. In this paper, we address a study of...

متن کامل

Bounded Max-colorings of Graphs

In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. In this paper we present complexity results and approximation algorithms for those problems on g...

متن کامل

Locally bounded k-colorings of trees

Given a tree T with n vertices, we show, by using a dynamic programming approach, that the problem of finding a 3-coloring of T respecting local (i.e., associated with p prespecified subsets of vertices) color bounds can be solved in O(n6p−1 log n) time. We also show that our algorithm can be adapted to the case of k-colorings for fixed k.

متن کامل

Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures & Algorithms

سال: 2020

ISSN: 1042-9832,1098-2418

DOI: 10.1002/rsa.20902